

Centre intégré de santé et de services sociaux de Lanaudière

Québec 🕯 🕏

L'intelligence artificielle appliquée aux soins et services de santé

Alexandre Cadrin-Chênevert, MD, B.Ing, FRCPC o Conférence-Midi du 6 juin 2024

Divulgation - conflits d'intérêts

- Commercial : Aucun conflit d'intérêt financier en lien avec la présentation
- Académique: Éditeur Associé journal Radiology: Artificial Intelligence (RSNA)
- Associatif : Membre du comité directeur en intelligence artificielle de l'Association Canadienne des Radiologistes (CAR)

Révolution ou évolution?

"L'intelligence artificielle est la nouvelle électricité.

Comme l'électricité a transformé la majorité des industries il y a 100 ans, l'intelligence artificielle va transformer presque tous les secteurs dans les prochaines années."

Andrew Ng, professeur

McKinsey & Company

"Nous estimons qu'entre 400 et 800 millions de personnes pourraient être déplacés par l'automatisation et devoir se trouver un nouveau travail d'ici 2030 à travers le monde"

Mckinsey Global Institute

"On devrait arrêter de former des radiologistes. Il est clair que d'ici 5 ans, l'intelligence artificielle va être meilleure que les radiologistes. " 24 novembre 2016

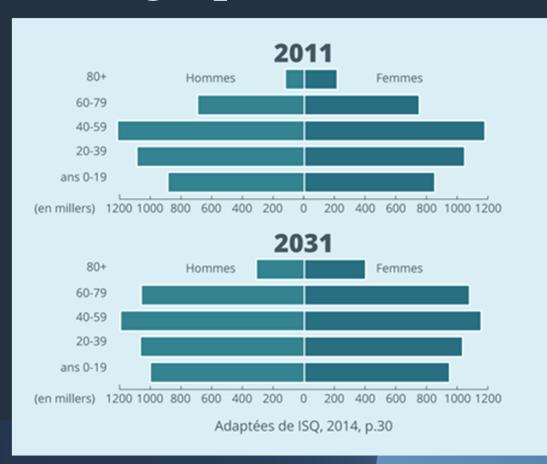
Geoffrey Hinton profi Université de Toronto

Système de santé : pénurie de main d'oeuvre

Nombre de professionnels des soins infirmiers qui offrent des soins directs par 1000 habitants (2022 ou l'année disponible la plus récente)

Sources : OCDE, Données, Santé, Infirmiers, OCDE, consultée le 26 septembre 2023; OCDE, Données, Population, OCDE, consultée le 26 septembre 2023; ICIS, Le personnel infirmier au Canada, 2022 – tableaux de données, Tableau 4 : Effectif, 2023.

Démographie: vieillissement de la population

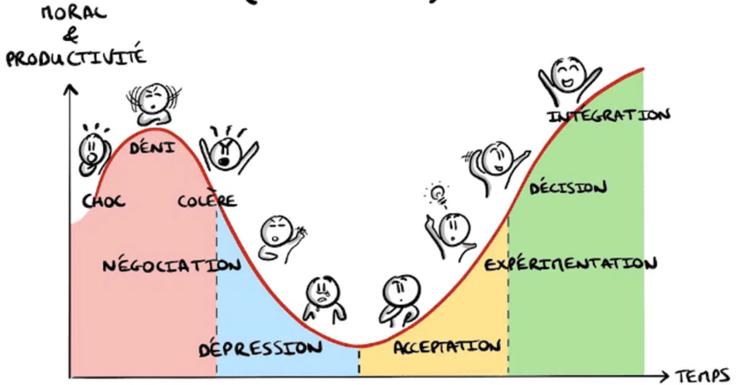


65 ans et plus

Source: Ministère de la Famille, « Les personnes âgées de 65 ans ou plus : données populationnelles », https://www.mfa.gouv qc.ca/fr/aines/chiffres-aines/Pages/personnes-agees-65-plus-donnes.aspx, consulté le 11 octobre 2016.

ÉTAPES DU CHANGEMENT

(KÜBLER ROSS)



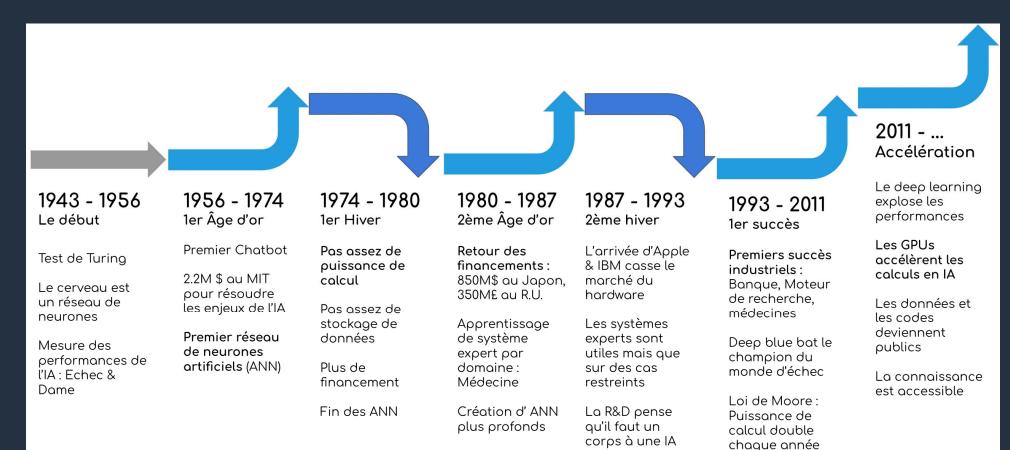
Plan de la présentation

- Définitions et concepts généraux en intelligence artificielle
- Limitations : Biais et Généralisation
- Champs d'application:
 - Vision
 - Langage
- Enjeux éthiques et régulation

INTELLIGENCE ARTIFICIELLE - DÉFINITION

• L'intelligence artificielle (IA) est un « ensemble de théories et de techniques mises en œuvre en vue de réaliser des machines capables de simuler l'intelligence humaine »

Perspective historique - intelligence artificielle



Intelligence artificielle

Apprentissage machine

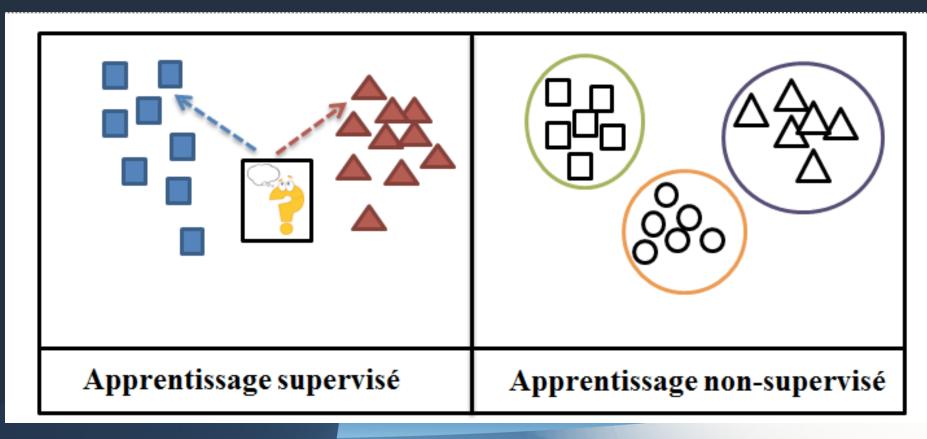
Apprentissage par représentation

Apprentissage profond

Adapté de Deep Learning, Goodfellow et al.

Apprentissage machine

Apprentissage supervisé vs non-supervisé



Orienté par une tâche

Orienté par les données

Tâches en radiologie: Vision et Langage

Image

Renseigner respiratoire

Constatatio pneumothor déplacement de la traché d'emphysèr

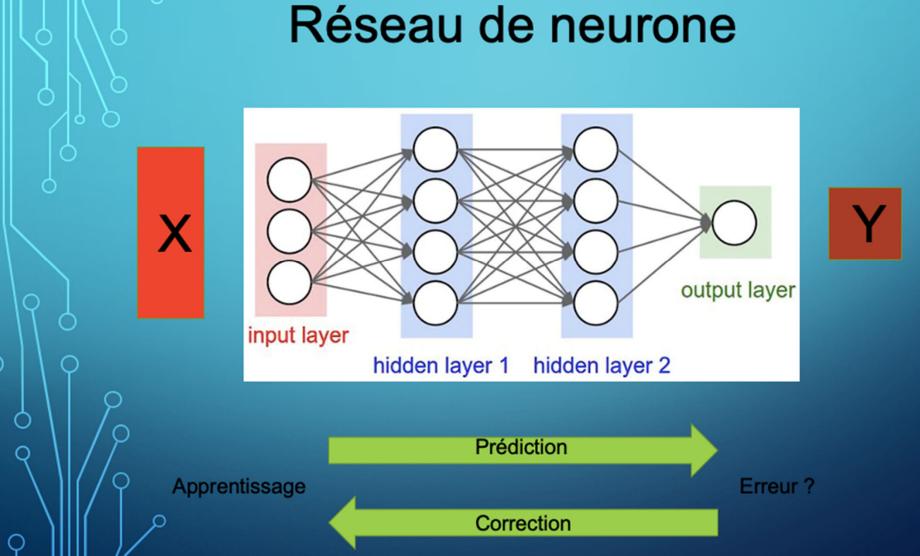
Renseignements : détresse respiratoire

Constatations : Important pneumothorax gauche avec déplacement significatif du coeur et de la trachés vers la droite. Pas d'emphysème sous-cutanée.

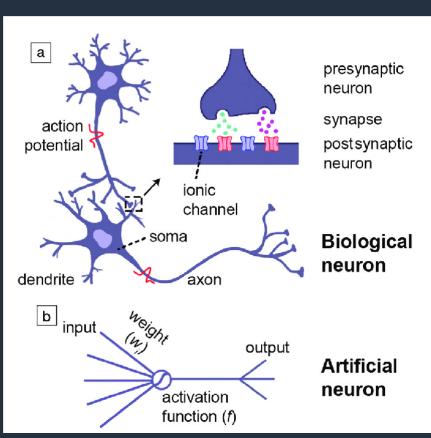
Impression : Pneumothorax gauche sous-tension. Médecin traitant avisé pour prise en charge immédiate.

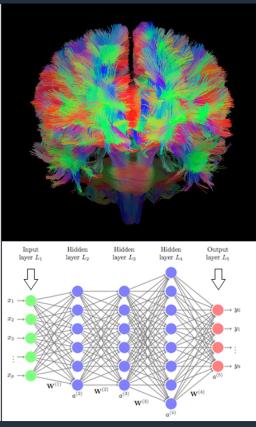
Vision

Langage



Comparaison biologique et artificielle





1000 trillions de synapses

2 trillions de paramètres

A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

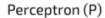
Deep Feed Forward (DFF)

Gated Recurrent Unit (GRU)

- Input Cell
- Noisy Input Cell
- Hidden Cell
- Probablistic Hidden Cell

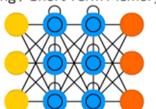
Backfed Input Cell

- Spiking Hidden Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- Different Memory Cell
- Kernel
- Convolution or Pool



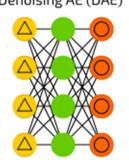
Feed Forward (FF)

Radial Basis Network (RBF)

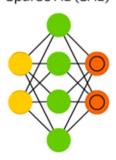


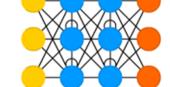
Long / Short Term Memory (LSTM)

Denoising AE (DAE)



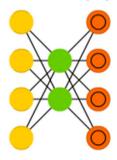
Sparse AE (SAE)



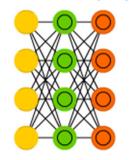


Recurrent Neural Network (RNN)

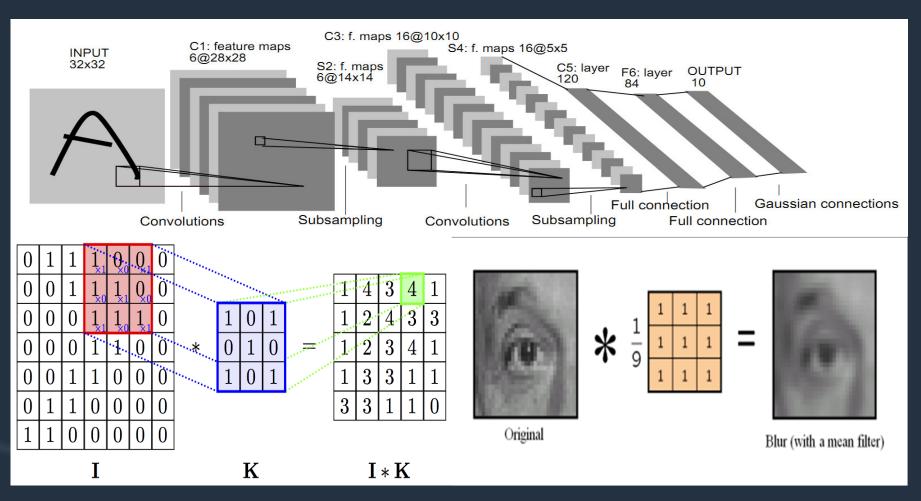
Auto Encoder (AE)



Variational AE (VAE)

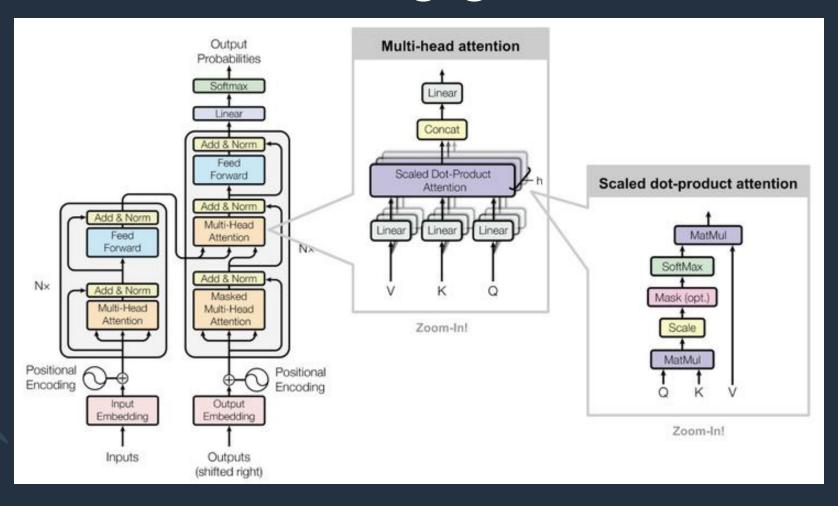


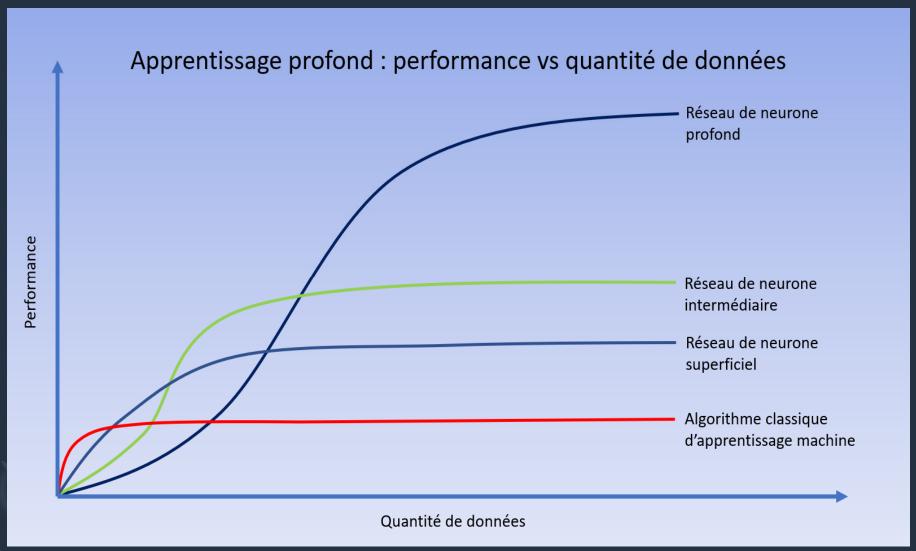
Réseau de convolution - Vision



From: https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution

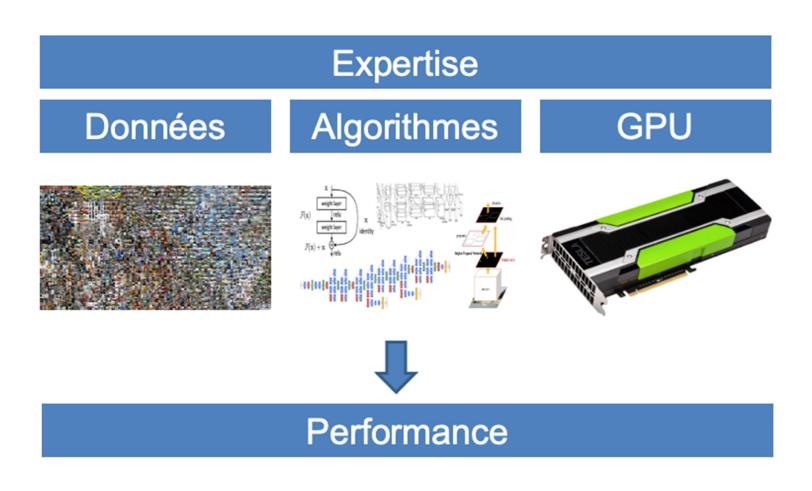
Transformeurs - Langage





Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, Barfett J, Chepelev L, Cairns R, Mitchell JR, Cicero MD, Poudrette MG. Canadian Association of Radiologists white paper on artificial intelligence in radiology. Canadian Association of Radiologists Journal. 2018 May;69(2):120-35.

Développement de l'apprentissage profond



Types de données dans le domaine de la santé

Clinique

Laboratoire

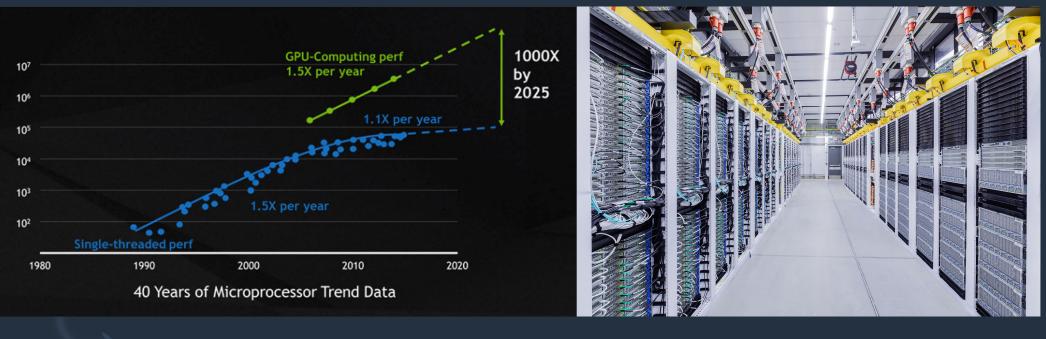
Imagerie

Pathologie

Pharamaceutique

Génétique

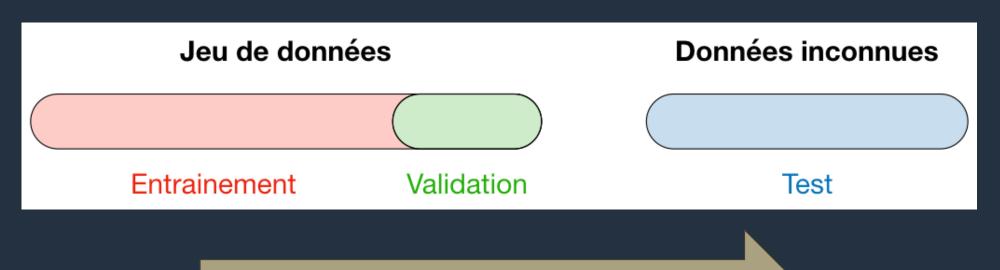
Évolution de la capacité de calcul



Avènement des cartes graphiques

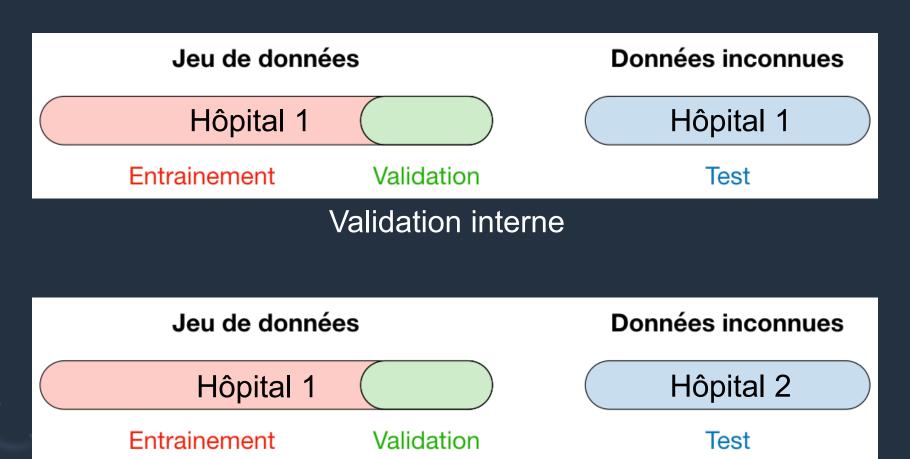
Progression des centres de donnée

Limitations : Généralisation



Généralisation de la performance

Validation interne vs externe



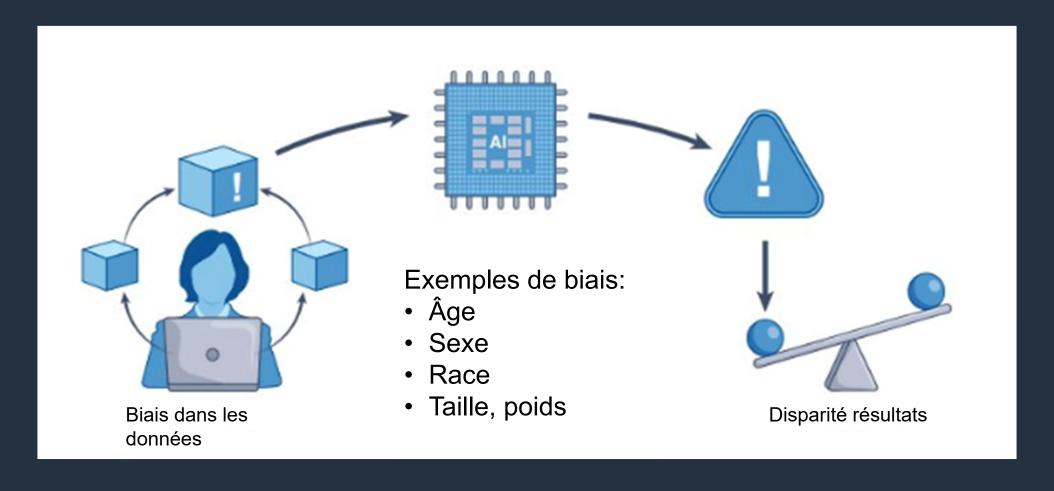
Validation externe

Revue systématique - validation externe

External Performance vs Internal No. of Studies ($n = 86$)				
Substantial decrease	21 (24.4)			
Modest decrease	21 (24.4)			
Little change	40 (46.5)			
Modest increase 3 (3.5)				
Substantial increase	1 (1.1)			
Total	86 (100)			

Yu AC, Mohajer B, Eng J. External validation of deep learning algorithms for radiologic diagnosis: a systematic review. Radiology: Artificial Intelligence. 2022 May 4;4(3):e210064.

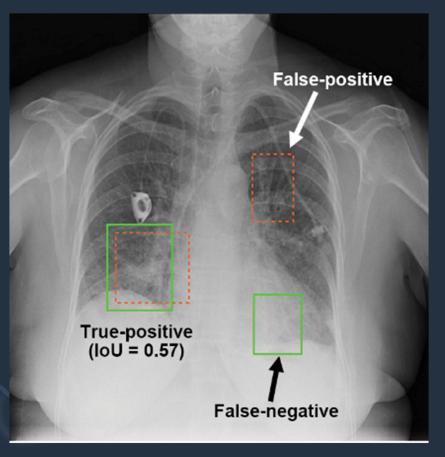
Limitations : biais dans les données



Applications pratiques en santé

- Vision
- Langage

Détection de pneumonies sur radiographies pulmonaires



Compétition internationale 2018 RSNA:

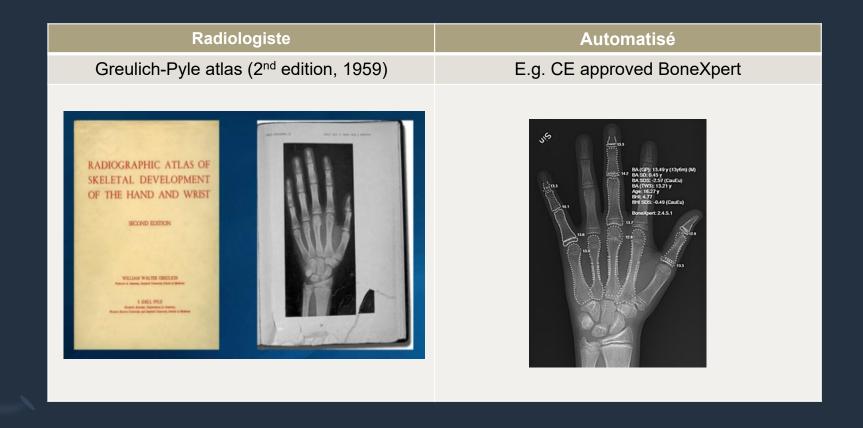
- Entraînement: 25500 images annotées
- Test: 4500 images annotées

Résultats:

- 1ère position sur 1502 équipes
- Aire sous la source ROC : 0.894

Pan I., Cadrin-Chênevert A. & Cheng P. Tackling the radiological society of north america pneumonia detection challenge. *American Journal Of Roentgenology*. 213, 568–574 (2019) pmid:31120793

Âge osseux



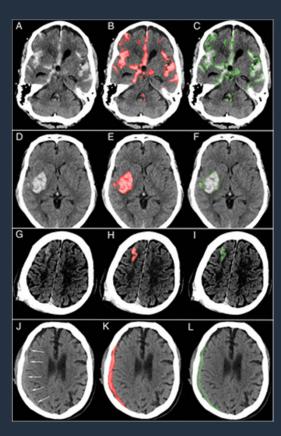
Âge osseux

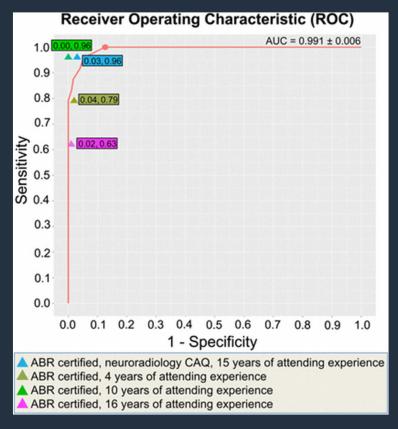
PHASE	LEADERBOARD	TEST	
No images	1425	200	
MEAN AD (BEST)	5.8	4.3	
CCC (BEST)	0.979	0.991	
MEAN AD (TOP 10)	5.8 – 6.4	4.3 – 4.9	
MEAN AD (HUMAN)		6.1*	
MEAN AD (PUBLISHED)		5.2*	

- Best mean absolute distance of 4.3 months compared to ground-truth
- No confidence intervals reported during the competition
- Compared to 6.1 months for radiologists and 5.2 months for the best previous published automated model

^{*} Larson DB et al. Radiology 2018; 287(1)313-322.

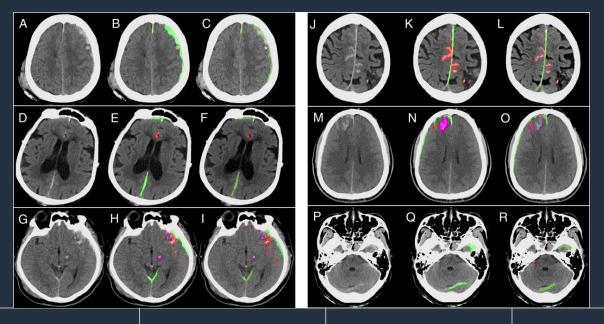
Hémorrhagie intra-crânienne





Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning Weicheng Kuo, Christian Häne, Pratik Mukherjee, Jitendra Malik, Esther L. Yuh PNAS November 5, 2019 116 (45)

Hémorrhagie intra-crânienne



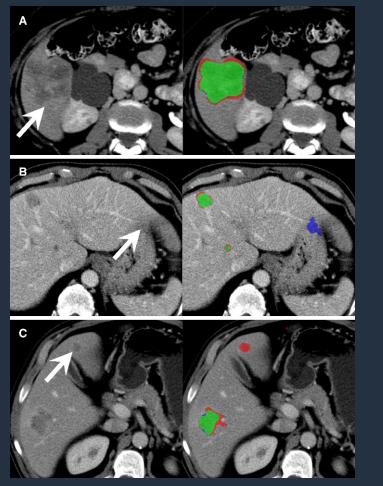
Classification Multi-classes

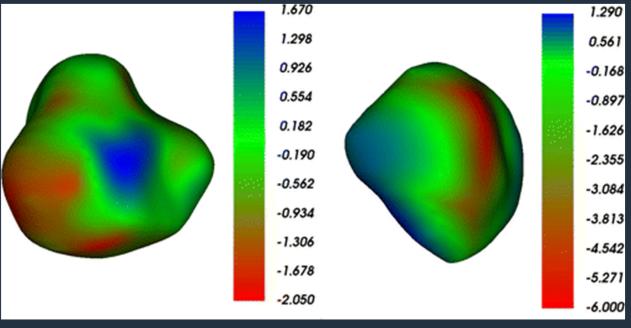
Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning
Weicheng Kuo, Christian Häne, Pratik Mukherjee, Jitendra Malik, Esther L. Yuh

Weicheng Kuo, Christian Häne, Pratik Mukherjee, Jitendra Malik, Esther L. Yul PNAS November 5, 2019 116 (45)

Class	1	2	3	4	Combined	
Hemorrhage types	SDH	EDH	Contusion, ICH, TAI	SAH, IVH	All types	
AUC of ROC	0.954 ± 0.010	0.940 ± 0.016	0.934 ± 0.007	0.956 ± 0.006	0.982 ± 0.004	

Segmentation des métastases hépatiques au CT





E. Vorontsov, M. Cerny, P. Regnier, L. Di Jorio, C. J. Pal, ´R. Lapointe, F. Vandenbroucke-Menu, S. Turcotte, S. Kadoury, and A. Tang, "Deep learning for automated segmentation of liver lesions at ct in patients with colorectal cancer liver metastases," Radiology: Artificial Intelligence, vol. 1, no. 2, p. 180014, Mar 2019

Segmentation des métastases hépatiques au CT

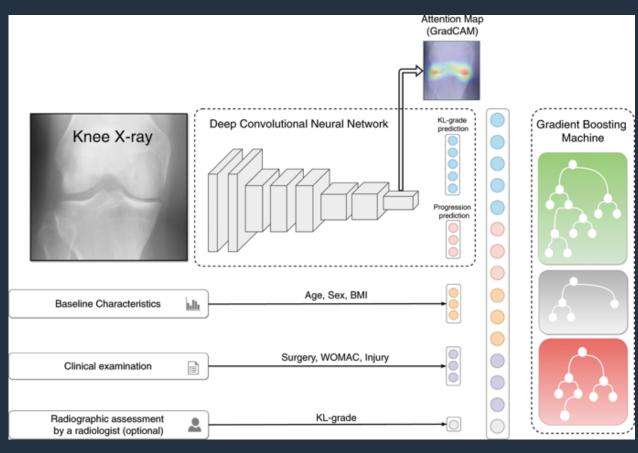
		Dice Similarity Coefficient per Detected Lesion		Maximum Symmetric Surface Distance (mm)		Average Symmetric Surface Distance (mm)				
Method	Users	<10 mm	10-20 mm	>20 mm	<10 mm	10-20 mm	>20 mm	<10 mm	10-20 mm	>20 mm
Manual	M^1	0.64 (0.60,	0.74 (0.72,	0.81 (0.79,	3.28 (2.92,	4.49 (4.10,	6.44 (5.70,	0.68 (0.55,	0.73 (0.65,	0.89 (0.75,
		0.69)	0.76)	0.83)	3.63)	4.87)	7.04)	0.80)	0.81)	1.01)
	M^2	0.65 (0.60,	0.74 (0.72,	0.82 (0.81,	3.07 (2.65,	4.77 (4.25,	6.09 (5.66,	0.66 (0.52,	0.76 (0.64,	0.80 (0.73,
		0.69)	0.76)	0.84)	3.45)	5.23)	6.52)	0.79)	0.86)	0.87)
User-correct-	C ¹	0.64 (0.58,	0.62 (0.58,	0.76 (0.73,	2.98 (2.52,	5.47 (4.98,	7.13 (6.51,	0.65 (0.45,	1.19 (1.04,	1.20 (1.04,
ed		0.70)	0.66)	0.79)	3.40)	5.94)	7.71)	0.82)	1.34)	1.34)
	C^2	0.67 (0.63,	0.65 (0.61,	0.78 (0.76,	3.62 (2.86,	5.34 (4.91,	6.96 (6.32,	0.72 (0.51,	1.08 (0.93,	1.02 (0.90,
		0.72)	0.68)	0.81)	4.22)	5.78)	7.54)	0.88)	1.23)	1.13)
Automated	A	0.14 (0.02,	0.53 (0.44,	0.68 (0.60,	5.15 (4.53,	6.00 (5.17,	10.42 (6.24,	2.65 (1.70,	1.65 (1.23,	2.82 (0.66,
		0.28)	0.62)	0.77)	6.21)	6.79)	13.48)	3.60)	2.04)	4.30)
		_				200		9 99		

E. Vorontsov, M. Cerny, P. Regnier, L. Di Jorio, C. J. Pal, `R. Lapointe, F. Vandenbroucke-Menu, S. Turcotte, S. Kadoury, and A. Tang, "Deep learning for automated segmentation of liver lesions at ct in patients with colorectal cancer liver metastases," Radiology: Artificial Intelligence, vol. 1, no. 2, p. 180014, Mar 2019

Arthrose genou

Grade Kellgren-Lawrence (KL)

Grade	Radiologic Findings
0	No radiological findings of osteoarthritis
I	Doubtful narrowing of joint space and possible osteophytic lipping
П	Definite osteophytes and possible narrowing of joint space
III	Moderate multiple osteophytes, definite narrowing of joint space, small pseudocystic areas with sclerotic walls and possible deformity of bone contour
IV	Large osteophytes, marked narrowing of joint space, severe sclerosis and definite deformity of bone contour



Tiulpin, A., Klein, S., Bierma-Zeinstra, S., Thevenot, J., Rahtu, E., van Meurs, J., Oei, E.H., Saarakkala, S.: Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data, *Scientific Reports* **volume 9**, Article number: 20038 (2019)

Arthrose genou Groupes KL 0 et 1 Prédiction de la progression

Model #	Model	AUC	АР
2	Age, Sex, BMI, Injury, Surgery, WOMAC, KL-grade (LR)	0.73 (0.70-0.75)	0.52 (0.49–0.55)
4	Age, Sex, BMI, Injury, Surgery, WOMAC, KL-grade (GBM)	0.75 (0.72-0.77)	0.54 (0.51–0.58)
5	CNN	0.78 (0.76-0.80)	0.58 (0.55-0.61)
6	CNN + Age, Sex, BMI, Injury, Surgery, WOMAC (GBM-based fusion)	0.78 (0.76-0.80)	0.58 (0.55–0.62)
7	CNN + Age, Sex, BMI, Injury, Surgery, WOMAC, KL-grade (GBM-based fusion)	0.80 (0.78-0.82)	0.62 (0.58-0.65)

Tiulpin, A., Klein, S., Bierma-Zeinstra, S., Thevenot, J., Rahtu, E., van Meurs, J., Oei, E.H., Saarakkala, S.: Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data, *Scientific Reports* **volume 9**, Article number: 20038 (2019)

Détection filtre VCI sur radiographie

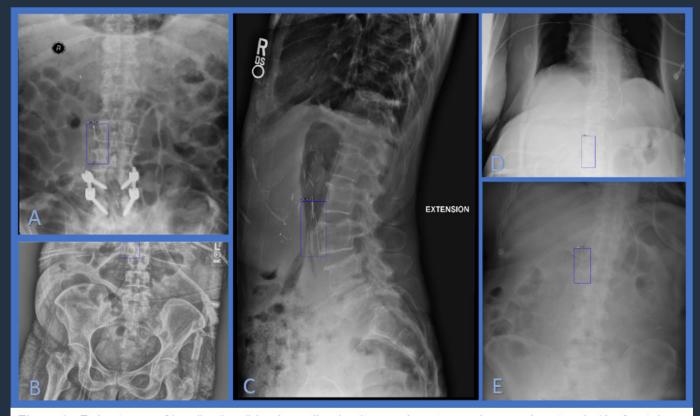


Figure 1 : Robustness of localization (blue bounding box) on various types views and protocols (A : frontal lumbar, B: frontal pelvis, C: lateral lumbar, D : upright diaphragmatic view, E : supine abdomen)

<u>CMIMI 2019 : Focal Loss for Classification and Localization of Retrievable IVC filter on Radiographs</u>

Judy W. Gichoya, MD, MS, Emory University; Alexandre Cadrin-Chênevert, MD; Adam Prater, MD, MPH; Mohammad Elsayed, MD

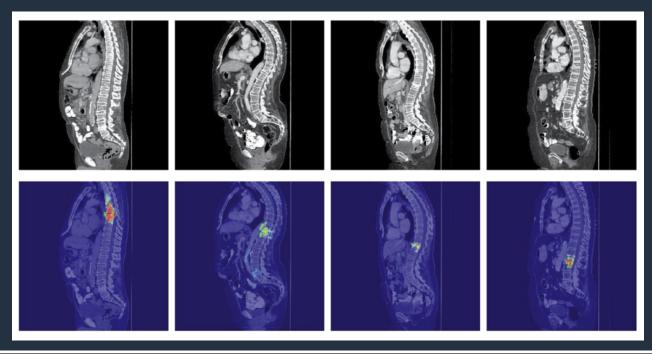
Nodule thyroïdien en échographie

- 571 patients : 500 bénins, 151 malins
- 2 vues : transverse et longitudinale

AUC = 0.88 distinction bénin vs malin

Predicting Thyroid Nodule Malignancy with Efficient Convolutional Neural Networks Ian Pan, MA; Matthew T. Stib, MD; William D Middleton, MD; Derek Merck, PhD; Michael D. Beland, MD RSNA 2018 scientific presentation – AI subsection

Fracture vertébrale sur CT



Model	Accuracy (%) (TP + TN)/ (TP + FP + FN + TN)	Precision (%) TP/ (TP + FP)	Sensitivity (%) TP/ (TP + FN)	Specificity (%) TN/ (TN + FP)	F1 score (%) 2TP/ (2 TP + FP + FN)
Radiologist diagnosis on report	88.4 (81.5–93.3)	100.0 (97.2–100)	81.5 (73.6–87.7)	100.0 (97.2–100)	89.8 (83.4–94.5)
CNN/Max	81.4 (73.6–87.7)	83.5 (76.2-89.6)	87.7 (80.6–92.7)	70.8 (61.9–78.2)	85.5 (78.0–90.9)
CNN/Avg	87.6 (80.6–92.7)	95.8 (91.2–98.7)	84.0 (76.2–89.6)	93.7 (88.1–97.3)	89.5 (82.5–93.9)
CNN/Vote	88.4 (81.5–93.3)	97.1 (92.3-99.1)	84.0 (76.2–89.6)	95.8 (91.2-98.7)	90.1 (83.4–94.5)
CNN/LSTM	89.2 (82.5–93.9)	97.2 (92.3–99.1)	85.2 (78.0–90.9)	95.8 (91.2–98.7)	90.8 (84.3–95.1)

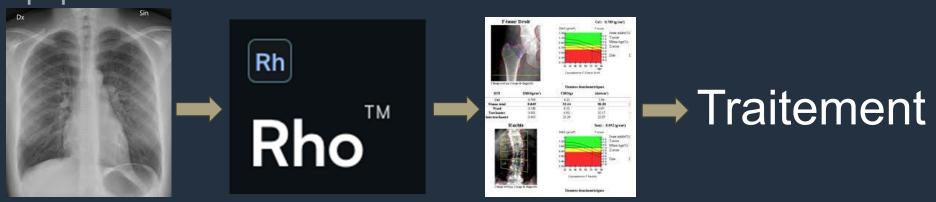
Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans[J]. Computers in Biology & Medicine, 2018, 98.

Dépistage opportuniste ostéoporose

Centre intégré
universitaire de santé
et de services sociaux
du Nord-del'Île-de-Montréal

Québec

➤ Par un processus innovant, améliorer significativement l'accès au dépistage et au traitement de l'ostéoporose, à un faible coût, pour diminuer le risque de fractures dans notre population.



Radiographie faite à l'urgence

Score Rho approuvé Santé Canada

Ostéodensitométrie

Dermatologie: classification lésions

Revue systématique 53 articles: Précision, sensibilité et spécifité similaire aux dermatologues

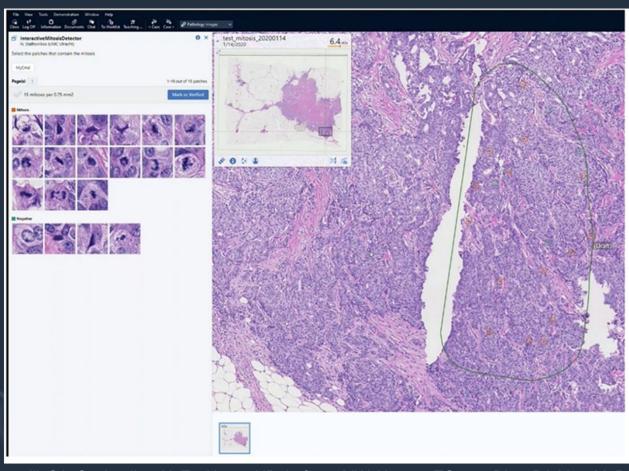
Mélanome

Nevus

Kératose

M. A. Kassem, K. M. Hosny, R. Damaševičius and M. M. இத்தொரி இது learning and deep learning methods for skin lesion classification and diagnosis: A systematic review", *Diagnostics*, vol. 11, no. 8, pp. 1390, Jul. 2021.

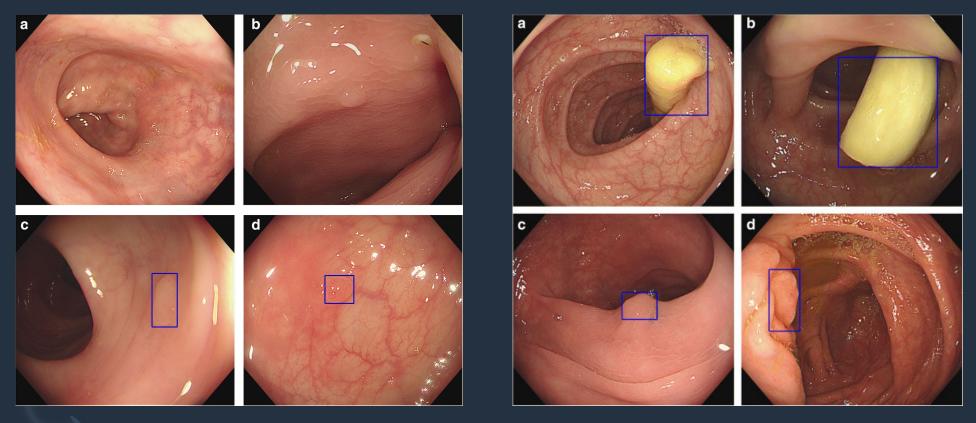
Pathologie: détections des mitoses



- Signe important pour classification des cancers
- En support au pathologiste, améliore la corrélation interobservateur sur la classification du nombre de mitoses

van Bergeijk SA, Stathonikos N, Ter Hoeve ND, Lafarge MW, Nguyen TQ, van Diest PJ, Veta M. Deep learning supported mitoses counting on whole slide images: a pilot study for validating breast cancer grading in the clinical workflow. Journal of pathology informatics. 2023 Jan 1;14:100316.

Colonoscopie : détection des polypes



Standard vs détection automatisée

Faux positifs

Luo Y, Zhang Y, Liu M, Lai Y, Liu P, Wang Z, Xing T, Huang Y, Li Y, Li A, Wang Y. Artificial intelligence-assisted colonoscopy for detection of colon polyps: a prospective, randomized cohort study. Journal of Gastrointestinal Surgery. 2021 Aug 1;25(8):2011-8.

Étude randomisée prospective (n=150)

Variable	Traditional colonoscopy (n = 150)	AI-assisted colonoscopy (n = 150)	p value	
Patients with at least one polyp, <i>n</i> (PDR)	51 (34.0%)	58 (38.7%)	< 0.001	
Patients with at least one diminutive polyp, n (%)	45 (30.0%)	52 (34.7%)	< 0.001	
Patients with at least one Paris type 0-IIa polyp, $n\left(\%\right)$	39 (26.0%)	48 (32.0%)	< 0.001	
Polyps detected, n	80	105	0.020	
Polyps detected, by dimension				
< 6 mm, n	69	91	< 0.001	
≥ 6 mm, <i>n</i>	11	14	0.319	
Polyps detected, by type ^a				
0-IIa, <i>n</i>	61	87	0.010	
0-Is, n	8	5	0.181	
0-lp, n	11	13	0.319	

- Augmente le ombre de patients avec au moins un polype
- Augmente la sensibilité des petits polypes (< 6 mm)

Luo Y, Zhang Y, Liu M, Lai Y, Liu P, Wang Z, Xing T, Huang Y, Li Y, Li A, Wang Y. Artificial intelligence-assisted colonoscopy for detection of colon polyps: a prospective, randomized cohort study. Journal of Gastrointestinal Surgery. 2021 Aug 1;25(8):2011-8.

Larges Modèles de Langage (ex. ChatGPT)

1) Prédiction du prochain mot

Contexte

Le	patient	a	des	frissons,	l'infirmière	prend	sa



Probabilité du prochain mot

températur e	pression	main	carte	pause
90%	9%	0.5%	0.4%	0.1%

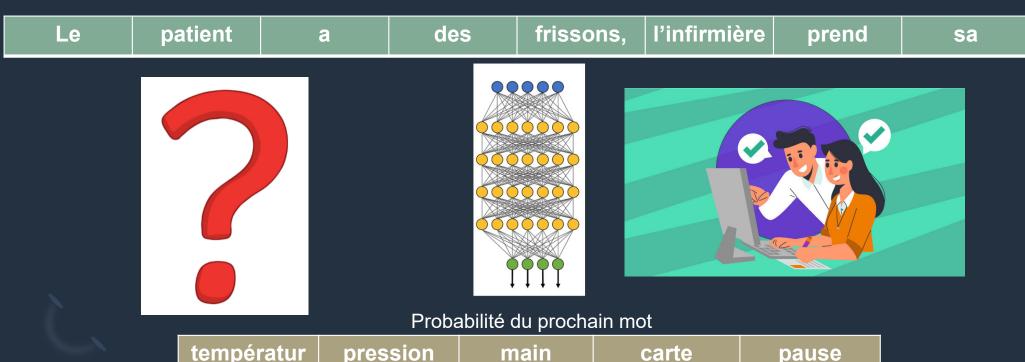
Larges Modèles de Langage (ex. ChatGPT)

2) Renforcement selon l'évaluation humaine

5%

95%

Contexte



0%

0%

0%

Larges Modèles de Langage (ex. ChatGPT)

Entraînement (quantité immense de données et de calcul)

- Presque toutes les données disponibles sur Internet (2-15 Trillions de mots)
- Dizaine de milliers de GPUs
- Plusieurs semaines à plusieurs mois d'entraînen
- Multiple langages
- Permet une représentation et une compréhension du monde en terme de langage

Limitations des Larges Modèles de Langage

- 1)Hallucinations : Génère des réponses crédibles mais erronées
- 2)Plagiat : Génère des réponses identiques à des articles sans citer la source
- 3)Droits d'auteurs sur les données d'entraînement

Limitations des Larges Modèles de Langage Hallucinations et Plagiat

- 24 mai 2024 Recherche Google Al:
- Q : Comment faire coller le fromage sur la pizza ?
- R : Il faut utiliser de la colle pour mieux faire coller le fromage.
- Donnée d'entraînement : Blague d'un utilisateur sur le site web Reddit II y a 1 Source : https://www.businessinsider.com/google-ai-glue-pizza-i-tried-it-2024-5

Langage: applications en santé

Industrie

- Information aux patients et clients
- Documentation essais cliniques
- Soumission régulation des produits

- Création de matériel d'éducation
- Assistants virtuels
- Création de questions/réponses

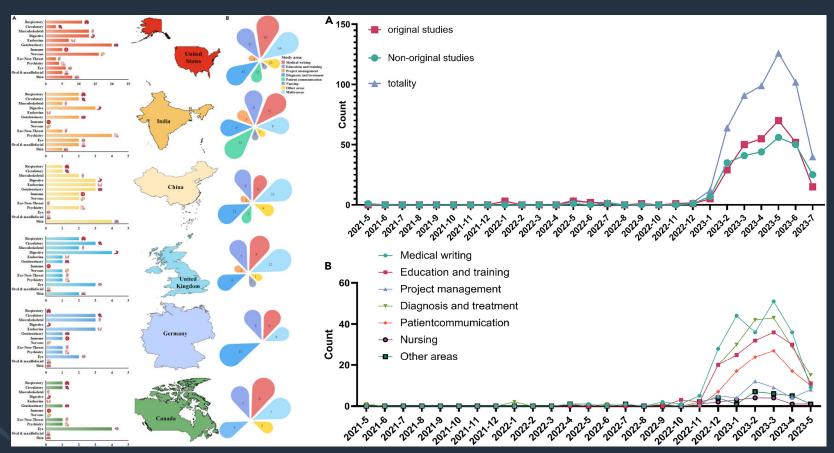
Éducation

Soins aux patients

- Support à la décision
- Support au patient
- · Plans de traitement
- Traduction et reconnaissance vocale
- Génération et synthèse des notes écrites
- Résumé des dossiers
- Assistant à la recherche
- Support aux publications scientifiques
- Recherche dans bases de données
- Extraction de données
- Sommaire et synthèse de donnéer

Recherche

Langage : explosion de publications depuis 2022



Meng X, Yan X, Zhang K, Liu D, Cui X, Yang Y, Zhang M, Cao C, Wang J, Wang X, Ji JM. The application of large language models in medicine: A scoping review. Iscience. 2024 Apr 23.

Langage: Résumé d'informations cliniques

Données	Tâche
Rapport de radiologie	Résumer les trouvailles dans une conclusion avec le minimum de texte.
Raison de consultation de patients	Résumer la demande d'un patient en une question clinique de 15 mots ou moins.
Résumé de dossier	Basé sur le dossier clinique, générer une liste de 3-7 problèmes cliniques ordonnés par niveau de priorité.
Dialogue médecin-patient	Résumer le dialogue en une évaluation et un plan
- 1 (00 antato lavolablo)	

Complet, Exactitude, Concision

Van Veen D, Van Uden C, Blankemeier L, Delbrouck JB, Aali A, Bluethgen C, Pareek A, Polacin M, Reis EP, Seehofnerová A, Rohatgi N. Adapted large language models can outperform medical experts in clinical text summarization. Nature Medicine. 2024 Feb 27:1-9.

Langage: Information aux patients

- Passage d'une recherche Google vers une discussion interactive personalisée (ex. ChatGPT)
- Information qui semble crédible mais pas toujours fiable
- Les régulateurs exigent des barrières de sécurité qui orientent vers une évaluation par des professionnels.

Langage: Information aux patients GPT4o

J'ai mal au ventre à la fosse iliaque droite et je fais de la fièvre, quel est mon diagnostic ?

La douleur dans la fosse iliaque droite accompagnée de fièvre peut indiquer plusieurs conditions possibles. L'une des causes les plus courantes est l'appendicite aiguë, qui est une inflammation de l'appendice. Voici quelques signes et symptômes courants de l'appendicite:

- Douleur abdominale qui commence souvent autour du nombril et se déplace ensuite vers la fosse iliaque droite.
- · Fièvre légère à modérée.
- Nausées et vomissements.
- Perte d'appétit.
- Sensibilité à la palpation dans la région de la fosse iliaque droite.

Cependant, d'autres conditions peuvent également causer des douleurs dans cette région, comme :

- · Infection intestinale (gastro-entérite).
- Maladie inflammatoire de l'intestin (par exemple, maladie de Crohn).
- Infection urinaire.
- Pathologies gynécologiques chez les femmes (par exemple, kyste ovarien, torsion ovarienne).

Il est essentiel de consulter un médecin rapidement pour une évaluation clinique approfondie et des tests diagnostiques appropriés, comme une échographie ou un scanner abdominal, pour déterminer la cause exacte de vos symptômes.

 Considère une appendicite et les symptômes associés

 Propose un diagnostic différentiel raisonnable

Suggère une consultation médicale

Modèles multimodales larges (LMM)

Intègre plusieurs modalités de données en même temps:

- Voix
- Vision (vidéos, photos)
- Texte

GPT4-Omni (OpenAI)

- Annoncé mai 2024
- Déploiement progressif

Google Gemini Ultra

Annoncé février 2024

Langage: Reconnaisance vocale

- Transfert de la voix vers du texte mais avec une compréhension du contexte.
- Transcription automatisée des rapports avec faible niveau d'erreurs
- Transcription structurée des discussions entre les professionnels et les patients dans un dossier médical électronique
- Éviter la surcharge de documentation écrite pour maximiser le

Yuan D, Rastogi E, Naik E, Chintagunta S, Rajagopal SP, Zhao F, Goyal S, Ward J. A Continued Pretrained LLM Approach for Automatic Medical Note Generation. arXiv preprint arXiv:2403.09057. 2024 Mar 14.

Langage: Traduction automatisée (GPT-40)

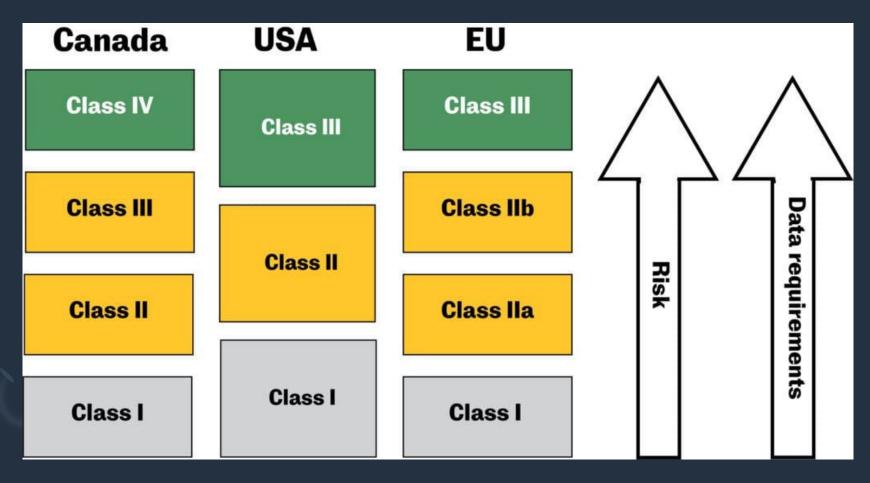
- Traduction automatisée en temps réel des discussions avec les patients
 - Améliore la communication et les soins
 - Peut adapter le niveau de langage au contexte
 - Pourra supporter près de 50 langages

Source : https://openai.com/index/hello-gpt-4o/

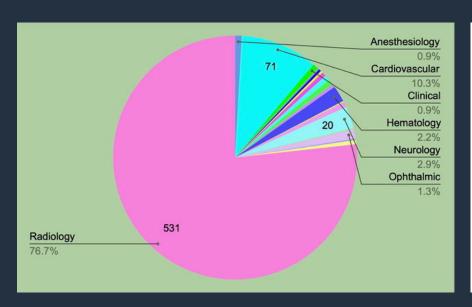
Enjeux éthiques en santé

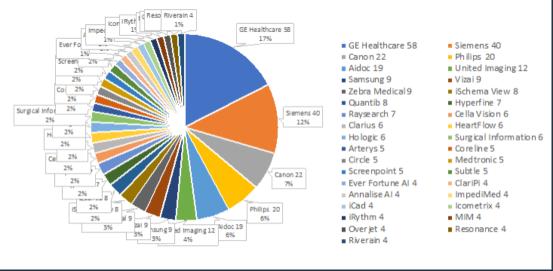
- Confidentialité des données de patients
- Consentement des patients dans l'utilisation de leurs données
 - Entraînement modèles vs services cliniques
- Sécurité des patients
- Équité et universalité des outils face aux biais

Régulation des dispositifs médicaux



FDA - Nombre d'outils IA 2023 - 692





Applications en radiologie 76.7%

Pas d'application approuvée Larges Modèles de Langage (type Chi

Message clés – Intelligence artificielle

01

Vaste quantité d'applications en vision et langage 02

Humain + IA facilite:

Qualité, sécurité et productivité

03

Attitude face au changement : exploration > peur

Centre intégré
de santé
et de services sociaux
de Lanaudière

Québec

Questions

Courriel: alexandre.cadrin-chenevert.med@ssss.gouv.qc.ca